Norwegian experience on deposition monitoring and assessment in Norway and Europe

Wenche Aas

Air pollution and impacts

Mobile, industrial and non-point sources

Atmospheric transport and chemistry

Receptors

Cultural heritage

Ecosystems

Crops

Humans/animals

Climate

Estuaries

The Norwegian national monitoring programme

- Fulfill several purposes
 - Transboundary fluxes
 - Contaminates (including new compounds of emerging concern)
 - Climate change and ozone layer
 - Provide data for effect studies (i.e. LRTAP ICPs) and research on atmospheric processes
 - Trends (compliance monitoring)
- Sites of different complexities
 - From very advanced/research oriented to only include a few compounds
- Long term (financial) commitment

All the data are openly available

http://ebas.nilu.no/

Database infrastructure for several networks: EMEP, ACTRIS, WMO GAW, AMAP, HELCOM, OSPAR and more

Urban montoring

- Municipalities /city authorities with the monitoring responsibilities
- Transferred data to different online data portal
- Reference laboratory at NILU
- Simple programme (mainly PM, NO2)
- More advanced observations in Oslo

The observational system needs to fulfill several criteria

•Long term commitments. Takes long time to obtain a useful time series -at least ten year

• Shorter periods for screening and research

Adequate spatial resolution

 Enough stations to observe regional differences, especially important in regions with strong meteorological variations

•Adequate temporal resolution

• Hours or days necessary to study sources and transport.

Adequate data quality

- Harmonized methods with international/national standards and use of reference methods and standard operational procedures
- Regularly checked

•Co-located measurements

• Many different components at the same sites. Cost efficient and better understanding of atmospheric processes and sources

Monitoring and **research** in close cooperation

- Use of same infrastructure (sites, lab, database)
- Dependent on each other

International commitments

- Program
 Protocols and conventions
- Quality standards, procedures and QA/QC assessments

Developing procesudurs, document tracebility and quality assessessmens of observations

In close cooperation with international monitoring frameworks and research infrastructures I.E EMEP, CEN, ACTRIS, ICOS, WMO-GAW

GAW Guidelines for Precipitation Chemistry Measurements – Appendix A (Updated – 10 July 2020; Previous Versions - 30 June 2018, and Original Version – November 2004)

TABLE A.1. DATA QUALITY OBJECTIVES (DQOS) FOR GAW PRECIPITATION CHEMISTRY MEASUREMENTS (effective 1 January 2018)

Measurement	Detection	Prec	ision	Inter-No	etwork Bias	Calibration	Data Completeness
Farameter	Linits	Overall	Laboratory	Overall	Laboratory	Levels	(See footnotes for PCL & TP)
pH (pH units)	Not Applicable	pH > 5: ± 0.1 pH < 5: ± 0.03	pH > 5: ± 0.04 pH < 5: ± 0.02	pH > 5: ± 0.24 pH < 5: ± 0.12	pH < 4: ±0.05 pH 4.00–4.99: ±0.07 pH ≥ 5.00: ±0.10	4.0 & 7.0 low ionic strength reference solution	90% PCL 70% TP
Conductivity (µS cm ⁻¹)	± 2	Not Available	Not Available	Not Available	± 7%	Between 2 nd & 98 th percentile concentrations	90% PCL 70% TP
Acidity/Alkalinity (µmole L-1)	Not Applicable	Not Available	Not Available	Not Available	± 25%	Between 2 nd & 98 th percentile concentrations	90% PCL 70% TP
SO4 2- (mg L-1)	0.06	0.06	0.03	± 0.42	± 5%	Between 2 nd & 98 th percentile concentrations	90% PCL 70% TP
NO3 - (mg L-1)	0.09	0.06	0.03	± 0.36	± 5%	Between 2 nd & 98 th percentile concentrations	90% PCL 70% TP
CI-	0.04	0.02	0.02			Between 2 nd & 98 th	90% PCL

Norwegian monitoring programme, regional background

(excl. climate gases or ozone depletion substances)

				Air					Preci	pitation	ı
	Ho	urly	Da	aily	Wee	ekly	2d per week	Daily	Wee	kly	monthly
Stasjon	Metr.	Ozone	main	NO2	PM _{2,5,} PM ₁₀ + EC/OC	HM.	POPs	main	main	нм	POPs
Birkenes Vatnedalen	х	Х	х	х	х	Xp	Xd	х	x	Хр	Xe
Treungen Haukenes		x							х		
Prestebakke Løken Hurdal	x	x x	x	x	x			x	x	Xª	
Brekkebygda									х		
Vikedal Sandve		х							х		
Nausta									х		
Kårvatn		Х	х	Х	Х			Х		Xa	
Høylandet									Х		
Tustervatn		Х	Х	Х				Х			
Andøya	Х					Xp	Xs				
Karpbukt									Х		
Zeppelin, Ny-Ålesund	х	х	х			Χc	Хs		х		
Total number	4	7+1	5	4	3	3	3	4	9	4	1

EMEP Monitoring strategy:

https://unece.org/fileadmin/DAM/env/docu ments/2019/AIR/EB_Decisions/Decision_201 9 1.pdf

Monitoring requirements for the various levels specified by the monitoring strategy

Levels 1 and 2 are mandatory. Information on reference methods is provided in the EMEP Manual for Sampling and Chemical Analysis and in the Quality assurance/Quality control section available on the EMEP Chemical Coordinating Centre website: www.emep.int; https://projects.nilu.no//cecc/index.html.

Level I - "variables to be measure	d at all basic EMEP sites"	Recommended temporal resolution
Inorganic compounds in precipitation	$SO_4{}^{2 \cdot},NO_5{}^{\cdot},NH_4{}^{+},H^+$ (pH), $Na^+,K^+,Ca^{2+},$ $Mg^{2+},Cl^{\cdot},precipitation$ amount	24 hours
Inorganic compounds in air	SO ₂ , SO ₄ ² , NO ₃ ⁻ , HNO ₃ , NH ₄ ⁺ , NH ₃ , (sNO ₃ , sNH ₄), HCl, Na ⁺ , K ⁺ , Ca ₂ ⁺ , Mg ₂ +	24 hours
Elemental and Organic Carbon	EC and OC in PM2.5	24 hours /7 days
Nitrogen dioxide	NO ₂	1 hour/24 hours
Ozone	O3	1 hour
PM mass concentration	PM2.5, PM10	24 hours
Heavy metals in precipitation	Cd, Pb (1st priority), Cu, Zn, As, Cr, Ni (2nd priority)	7 days
Meteorology	Precipitation amount (RR), temperature (T), wind direction (dd), wind speed (ff), relative humidity (rh), atmospheric pressure (pr)	24 hours (RR), others 1 hour
Level 2 - "additional variables to	be measured at a subset of sites - EMEP level 2	Recommended
oxidant precursors and gaseou	as short-lived climate pollutants	temporal resolution
Sites" Oxidant precursors and gaseou Nitrogen oxide	as short-lived climate pollutants	temporal resolution
sites" Oxidant precursors and gaseon Nitrogen oxide Light hydrocarbons	as short-lived climate pollutants NO C2–C5, BTEX (Benzene, Toluene, Ethylbenzene and Xylene)	1 hour 1 hour/grab sample once or twice per week
sites" Oxidant precursors and gaseon Nitrogen oxide Light hydrocarbons OVOCs	as short-lived climate pollutants NO C2-C5, BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Aldehydes and ketones	I hour I hour/grab sample once or twice per week Absorbing Solution tube, once or twice per week
sites" Oxidant precursors and gaseon Nitrogen oxide Light hydrocarbons OVOCs Hydrocarbons	as short-lived climate pollutants NO C2-C5, BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Aldehydes and ketones C6-C12	temporal resolution l hour l hour/grab sample once or twice per week Absorbing Solution tube, once or twice per week l hour/ABS tube, once or twice per week
sites" Oxidant precursors and gaseon Nitrogen oxide Light hydrocarbons OVOCs Hydrocarbons Methane	as short-lived climate pollutants NO C2-C5, BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Aldehydes and ketones C6-C12 CH4	temporal resolution I hour hour/grab sample once or twice per week Absorbing Solution tube, once or twice per week I hour/ABS tube, once or twice per week I hour
sites" Oxidant precursors and gaseon Nitrogen oxide Light hydrocarbons OVOCs Hydrocarbons Methane Carbon Monoxide	as short-lived climate pollutants NO C2-C5, BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Aldehydes and ketones C6-C12 CH4 CO	temporal resolution I hour I hour/grab sample once or twice per week Absorbing Solution tube, once or twice per week I hour/ABS tube, once or twice per week I hour I hour I hour
Attes" Oxidant precursors and gaseou Nitrogen oxide Light hydrocarbons OVOCs Hydrocarbons Methane Carbon Monoxide Particulate matter (PM) obser its source apportionment	as short-lived climate pollutants NO C2-C5, BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Aldehydes and ketones C6-C12 CH4 CO vations contribute to the assessment of partic	temporal resolution I hour I hour/grab sample once or twice per week Absorbing Solution tube, once or twice per week I hour/ABS tube, once or twice per week I hour hour hour tube tube tube tube tube tube tube tube

Total (wet + dry) deposition of S and N

- Simple estimates every year at the 4-5 sites with concentrations in both air and precipitation
- Using dry deposition rates from literature
- 10-35% dry deposition. Highest for nitrogen, and higher in summer than winter

Atmospheric deposition of sulfur and nitrogen -for critical load assessments

Trends in atmospheric deposition

Data used for total depositum assessment

- Some regions with too few sites
- Some sites maybe not regionally representative (special problem for Nred)
- Dry deposition 10-30 % of total deposition
- Large differences in precipitation amounts in Norway

Extrapolating concentration fields:

Statistical kriging techniques

Or:

• EMEP model (simple data assimilation)

Calculate dry deposition rates:

Data from literature

Or

• Fluxes from EMEP model

Using atmospheric models in combination with observations

✓ Improve the spatial distribution.

- Especially in regions where sites are missing.
- Bias in kriging approach when spatial representativity's of the sites are not homogeneous
- Spatial resolution of many models have improved the latter years
- ✓ Improve dry deposition calculations.
 - Data from literature is too crude and are not changing
- However, model output is dependent on good emission data

Data model fusion become more common, i.e.:

- Copernicus Atmosphere Monitoring Service (not dep yet)
- WMO GAW MMF GTAD

Spatial coverage

✓ Dependent on what to study

- Catchment or ecosystem (or health, climate)
- Local, national or regional focus

✓ International requirements

- EMEP (Monitoring strategy)
- EU AQD

Implementation of the EMEP basic monitoring programme

Site representativity

- ✓ Dependent on component
- Dependent on orography and meteorology
- ✓ A site representativity can change with time
 - In nearby sources: Farming, traffic, dust, heating
 - Vegetation changes
 - New buildings/obstacles
- Site representativity needs to be documented
 - Pictures
 - Campaigns studied (i.e. passive sampling)
 - Modelling (i.e. compare models with observations and inverse modelling)

Final remarks of the Norwegian programme

- Internationally, Norway has some of longest time series of high quality atmospheric observations
- Fulfill to a large extent our international obligations
- Some gaps in spatial coverage
- Good and important link with **research** communities
- Relatively stable national funding
- Still knowledge gaps on sources, transport pattern and atmospheric processes and deposition

